
AD-A262 808
ITECHNICAL REPORT RD-GC-93-16

I APPLICATION OF IMAGE COMPRESSION
"TO DIGITAL MAP DATABASES

Marc W. Crooks
Guidance and Control Directorate
Research, Development, and Engineering Center

FEBRUARY 1993 DTIC
•"I• -•L-C'TE D

j V. ARl19 1993

RedsoneArsnalAla ama35898-5000

Approved for public release; distribution is unlimited.

SI 93-05685

SMI FORIM 1021, 1 AUG 85 PREVIOUS EDITION IS OBSOLETE

DISPOSITION INSTRUCTIONS

WHEN THIS REPORT IS NO LONGER NEEDED. DEPARTMENT OF THE

ARMY ORGANIZATIONS WILL DESTROY IT IN ACCORDANCE WITH

THE PROCEDURES GIVEN IN AR 3411".

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN
OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIG-

NATED BY OTHER AUTHORIZED DOCUMENTIS

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES
NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF

THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THiS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
UNCLASSIFIED........

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

TR-RD-GC-93-16
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Guidance and Control Directora (ifapPlicable)

RDEC AMSMI -RD-GC-S
6C. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
Commander, U.S. Army Missile Command
ATTN: AMSMI-RD-GC-S
Redstone Arsenal, AL 35898-5254

8a. NAME OF FUNDING /SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATIrN NUMBER
ORGANIZATION (If applicable)

IL ADDRESS (0icy, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT . TASK I WORK UNIT
ELEMENT NO. NO. NO. aCCESSION NO

11. TITLE (include Securgy Classification)

Application of Image Compression to Digital Map Databases
12. PERSONAL AUTP.'C1(S)

Marc W. Croo,
13.. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year. Mont. Day) IS. PAGE COUNT
Final : FROM Feb 92 TOSep21 February 1993 38

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necetary and identify by block number)
FIELD GROUP SUB-GROUP Image compression

I Digitized
paper maps

19. ABSTRACT (Continue on reverne if necesiery and Wientify by block number)
The Microprocessor Technology Utilization Program (RG-7) exists for the purpose of

examining commercial microprocessor hardware and applying it to developing military

systems prior to the release of any militarized components. As a part of this objective,

RC-7 is looking at commercially available image compression chips/chipsets that might

serve a valuable role in emerging military systems. Under the RG-7 program, we have

examined still image compression chips/chipsets and their potential application in the

area of digital map database compression.

20. DISTR'I•BUTION /AVAIL.ABILITY OF ABSTRACT 2•1- ABSTRAC•T SECURITY CLASSIFICATION

M UNCLASSIFIED/UNLIMITED C-3 SAME AS RPT C3 DTIC USERS UNCdLA'SSIFIE•D

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c- OFFICE SYMBOL
Marc W. Crooks (205) 842-6915 AMSMI-RD-GC-S

0D Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
i/(ii blank) UNCLASSIFIED

Table of Contents

I. INTRODUCTION .. I

II. BACKGROUND .. 1

III. IMAGE COMPRESSION TECHNIQUES ... 2
9

IV. JPEG ALGORITHM ... 2

V. EXTENSIONS TO THE JPEG STANDARD 4

VI. DATABASE PREPROCESSING .. 5

VII. DATABASE DECOMPRESSION ... 6

VIII. RESULTS ... 8

IX. CONCLUSIONS ... 10

APPENDIX A .. 15
CODE TO REFORMAT ADRG DATA .. 15
CODE TO COMPRESS ADRG DATA .. 20
CODE TO DECOMPRESS AND DISPLAY ADRG DATA 23

APPENDIX B .. 30
TECHNICAL SOURCES ... 30

APPENDIX C .. 31
KEY TERMS ... 31

APPENDIX D .. 32
COMPRESSION HARDWARE DIAGRAM 32
DECOMPRESSION HARDWARE DIAGRAM 32

*. Accesion For

NTIS ,.7 1
DTIC 1,if

, Dist- ibjtion -

Availability Codes

Avail andIor

iiiDist Special

'I.'

List of Fi.ures

Figure 1. JPEG Baseline Compression ... 3

Figure 2. JPEG Baseline Decompression .. 4

Figure 3. JPEG Baseline Algorithm Plus Color Space Extension 5

Figure 4. ADRG Pixel Tile Arrangement .. 5

Figure 5. ADRG Database Preprocessing .. 6

Figure 6. ADRG Compression Ratios vs. Quantization Factors 9

Figure 7. Uncompressed ADRG Map .. 11

Figure 8. ADRG Map Compressed Using Q = 2 (2.9: 1) 12

Figure 9. ADRG Map Compressed Using Q = 160 (19.8:1) 13

Figure 10. ADRG Map Compressed Using Q = 255 (24.1:1) 14

iv

APPLICATION OF IMAGE COMPRESSION
TO DIGITAL MAP DATABASES

I. INTRODUCTION

The Microprocessor Technology Utilization Program (RG-7) exists for the
purpose of examining commercial microprocessor hardware and applying it to
developing military systems prior to the release of any militarized components.
As part of this objective, RG-7 is looking at commercially available image
compression chips/chipsets that might serve a valuable role in emerging
military systems. Under the RG-7 program, we have examined still image
compression chips/chipsets and their potential application in the area of
digital map database compression.

As imaging needs continue to grow, techniques are needed to help
control the vast amounts of data produced. One example of this can be seen in
the area of digitized paper maps. A single 1/50,000 scale ARC Digitized Raster
Graphics (ADRG) map image requires approximately 373 Mbytes of memory to
represent an area of approximately 44Km x 72Km. This memory requirement
is clearly overwhelming to all but the largest storage media. To compound
matters, when a significant area of coverage is required, even the largest
storage media are ineffective. Not only are the memory requirements
enormous, transmission of images this large would require extraordinarily long
periods of time (4.5 days @ 9600 Baud). In order to reduce this massive
storage and transmission requirement, this study examined the application of
still image compression techniques to digitized paper map data.

II. BACKGROUND

Many military systems may soon begin to require the use of digitized
paper maps for land navigation purposes. Some candidate systems may
include Multiple Launch Rocket System (MLRS), Fiber-Optic Guided Missile
(FOG-M), Unmanned Aerial Vehicle (UAV), and Unmanned Ground Vehicle
(UGV). In this study, MLRS was the system targeted for implementing a
compressed map database. When fielded, the MLRS Improved Fire Control
System (IFCS) will contain a militarized 300-Mbyte hard disk for all system
storage requirements. As previously stated, this will not even allow for a 44Km
x 72Km area of coverage of digitized paper maps. Clearly, the solution is to
reduce the storage size of the digitized paper maps while retaining high visual
quality.

During the development of the MLRS IFCS, a Technical Risk Investigation
System (TRIS) was designed to investigate problems associated with current
technology limitations and explore possible solutions to these problems. As
part of the MLRS TRIS, the use of compressed digitized paper maps was

studied. This study looked at both the preprocessing phase (compression) of
digitized paper maps as well as the decompression and display of these maps.
As an end result of this study, it is hoped that lessons learned from the MLRS
TRIS can be applied to any and all military systems requiring digitized paper
map data.

III. IMAGE COMPRESSION TECHNIQUES

As part of this study, four types of image compression techniques were
examined for their potential use in digitized paper map compression. These
image compression techniques include Joint Photographic Experts Group
(JPEG), Px64, Motion Picture Experts Group (MPEG), and Fractal Compression.
See Table 1 for a brief summary of each compression technique. After careful
examination of each data compression technique, it was decided that JPEG
would be used to implement the compressed digitized paper map study. Two
reasons were cited for this decision: (1) JPEG is currently in the balloting phase
of becoming an international sLandard (ISO/IEC DIS 10918), and (2) vendors
are currently marketing chips/chipsets that comply with the JPEG algorithm.
At the time of this study, no chips/chipsets were found that implemented
either the Px64 algorithm or MPEG algorithm. The fractal compression
technique, although promising, is a proprietary algorithm and thus not an
industry standard.

NAME COMPRESSION INDUSTRY STANDARD IMAGE TYPE USEABLE REAL TIM E
ALGORITHM _RATIOS COMP/DECOMP

JPEG DCT Balloting phase Full color; Still images 25:1 Yes

Px64 DCT; Predictive Yes Full color; Low motion level video 100:1 Yes
interframe coding images

MPEG DCI'; Interpolated Draft phase Full color; Motion intensive video 200:1 No-compression
interframe coding images Yes-decompression

FRACTAL Fracta] Transform No Full color; Still images and motion 76:1 No-compression

intensive video images Yes-decompression

Table 1. Image Compression Technique Comparison

IV. JPEG ALGORITHM

The JPEG algorithm is a Discrete Cosine Transform (DCT) based
technique that is primarily used for continuous-tone still images. The
algorithm itself relies heavily on reducing redundant visual information

2

DISCRETE COSINE TRANSFORM[1I
7 7

S", I C.C j S, - CS (2X + l)UXCOS (2y + l)vwr

4 X Y016 16

by way of the DCT and quantization and then efficiently encoding the data.
Because redundant data is removed during the JPEG compression process and
therefore the compressed image no longer exactly matches the original image,

0, this type of compression technique is said to be "lossy".

The sequence of events that occur during a JPEG compression can be
seen in Figure 1. The first step involves performing a DCT on the image

OTuageaonEntropy Compressed

Daa OCT Quantization 6 Encoding Image

Figure 1. JPEG Baseline Compression

data. The DCT itself is used to transform the image data into its frequency
coefficients. Once these frequency coefficients have been isolated, they are
then quantized in order to reduce the range of possible frequency values. The
level of quantization the frequency data undergoes is known as the
"quantization factor". The quantization factor is a user definable value and, as
will be discussed later, plays a significant role in the quality of a compressed
image and the level of compression attained. The quantization phase of the
compression process is the "lossy" portion of the JPEG algorithm. Entropy
encoding then follows. This step compresses the data yet again but it does so
in a "lossless" manner (data in exactly represents data out). Data that occurs
frequently is represented using shorter codes while less frequently occurring
data is represented with longer codes. The output from the encoding phase
represents the compressed image.

In order to display a compressed image, it must first be decompressed.
Because of the nature of the DCT and the JPEG standard, the sequence needed

"4- for decompression is simply the reverse of the compression process. The
decompression sequence is illustrated in Figure 2. The compressed image is
first decoded, an inverse quantization is then performed, and finally the Inverse
Discrete Cosine Transform (IDCT) is used to convert the frequency coefficients
back into pixel data.

3

Si - _ _ _

Image IOCT Inverse Entropy Compressed

D• Di Ouantization Decoding Image
I I

I

-

Figure 2. JPEG Baseline Decompression

The IDCT can be seen below.

INVERSE DISCRETE COSINE TRANSFORM[1]

1 7 7 (2x +l))uor (2y+ l)vr4 u-0 vcv co 16 16

V. EXTENSIONS TO THE JPEG STANDARD

The JPEG standard was written so as to perform compression on image
data independent of the color space of the data. Vendors, however, have added
specialized front ends to their chips/chipsets so as to allow the user to easily
compress common image data formats. One such representation of image data
is red, green, blue (RGB). Because many digital image databases are
represented in this format, it was necessary for vendors to develop suitable
front ends that would enable compression of RGB data. The most common
front end solution to compressing RGB data is to convert it to its luminance
and chrominance (YUV) components. This is done by performing the following
linear transformation on the RGB data:

RGB-to-YUV TRANSFORMATION[21

Y 0.299 0.587 0.114 R

U = -0.169 -0.3316 0.500 G

V 0.500 -0.4186 -0.0813 B

Upon decompression, the inverse of the above matrix is used to go from YUV
color space to RGB. Figure 3 shows the JPEG baseline

compression/decompression algorithm plus extensions provided by vendors for
handling RGB color space issues. Color spaces other than RGB that vendors
make allowances for include cyan, magenta, yellow, black (CMYK) and gray
scale.

4

I I -o , OCT ,Ouent,.,ztion En,,opy F-.' Compressed

Inverse Entropy CompreSSed
to IuCT suantization Decoding ImageRG8

Figure 3. JPEG Baseline Algorithm Plus Color Space Extension

VI. DATABASE PREPROCESSING

In order to adequately examine digitized paper map database
compression/decompression, a suitable database had to be selected that would
comply with the requirements imposed by the MLRS IFCS. The database
selected was 1/50,000 scale ADRG. This database is distributed by the
Defense Mapping Agency (DMA) and is available on compact disk (CD-ROM).
The area of coverage received was from 490 00'N to 490 24'N longitude and 110
O0'E to 120 00'E latitude (part of what was formerly West Germany). This
digitized paper map data is in 24-bit RGB format and requires approximately
373 Mbytes of space on the CD-ROM.

The format of the image data on the CD-ROM required that the data be
reformatted prior to compressing the image. As shown in Figure 4 the raw
image data is broken down into 128x128 pixel tiles. Each of these tiles

C PIXEL (0.0)

RED PIXEL GREEN PIXEL BLUE PIXEL
TILE TILE TILE

PIXEL (127,127)

Figure 4. ADRG Pixel Tile Arrangement

represents either red color byte information, green color byte information, or
blue color byte information. For proper compression, the image data must be

5

in a sequential RGB format. This means that for any image tile, red pixel.,y
must be placed next to green pixel.,y which should be adjacent to blue pixel.,..
All pixels in each image tile are arranged in this RGB manner prior to any
compression. RGB-ordered image tiles are then saved to a hard drive to await
compression. Code that was generated to perform this reformatting of the
ADRG image data can be found in Appendix A.

Once the complete ADRG image has been reformatted, the compression
portion of the database preprocessing sequence can begin. This sequence
prompts the user for the upper left longitudinal and latitudinal coordinates of
the image, the compressed file prefix, and the quantization factor that will be
used in compression of all image tiles. Once determined, all image tiles will be
named using the user inputs and compressed using the particular quantization
value. The quantization factor is used to determine the level of redundancy
eliminated and does not directly represent the compression ratio that will be
achieved. Because some ADRG image tiles will contain more redundant visual
information than others, the compression levels between tiles will differ. After
each image tile has been compressed, it is then stored on the MLRS TRIS hard
drive until needed for display. Figure 5 shows the entire preprocessing
sequence as performed on a 486 computer equipped with a CD-ROM.

RETOMPRESSION S
,D A T A B L U E I L E *F

ADRG 128x128 PIXEL 128x128 PIXEL COMPRESSED TRIS

DATA TILES TILE TILE HARD DISK

Figure 5. ADRG Database Preprocessing

VII. DATABASE DECOMPRESSION

An important consideration in database decompression was to make sure
that images were decompressed quickly so as to not create huge latency
periods during data updates. From Table 1 it can be seen that JPEG compliant
chips/chipsets will perform image compression/decompression in "real-time".
This means that images can be compressed/decompressed at video rates of 30
frames per second. This claim of "real-time" can be somewhat misleading
because it is dependent upon the resolution and quantization level of the
image. An image with less resolution can be compressed at a lower
quantization level (lower compression ratio; better visual quality) in "real-time"
while an image with a higher resolution must be compressed at higher
quantization levels (higher compression ratio; poorer visual quality) in order to
be "real-time". A second point must also be made about
compression/ decompression rates. Even though compression/decompression
may occur at rates of 30 frames per second, one must still transfer data to and

6

from the compression/decompression card. This means that a bottleneck exits
with respect to transferring data to and from a hard drive, memory, serial
input/output (I/O), CD-ROM, etc. In order for the compression chip/chipset to
achieve maximum compression/decompression rates, high data transfer rates
must be supported and this is sometimes not achievable in a personal
computer (PC) environment. The "real-time" compression/ decompression claim
of JPEG compliant chip/chipset vendors must be viewed with an
understanding of the end goal and the possible limitations of the target system.

With this in mind, we remember that in our application we are examining
the use of JPEG to compress/decompress digitized paper map data for the
purposes of land navigation. For our study, this task does not need to be
performed in "real-time". A vehicle such as MLRS is not overly quick and will
perhaps sit at a single location for long periods of time. This will not require
high update rates from the compressed image data. Perhaps the only time that
a high volume of data will be required for decompression and display will be at
startup. At this time, an initial map will be retrieved from memory,
decompressed, and displayed. After that, only small updates will be required
to support vehicle movement, etc. The "real-time" decompression and update
of the map is not a critical issue. The decompression and display of the map
data should be reasonably quick but "real-time" is not a requiremcnt.

The decompression side of digitized map database display involves three
main events. These three events include map tile retrieval, decompression, and
display. Each of these events must occur in a manner that will minimize the
overall time required for map updates. For demonstration purposes, code was
generated on a 486 PC that retrieved, decompressed, and displayed
compressed ADRG data (see Appendix A).

Retrieval of map involves first selecting a tile or multiple tiles for display.
This might involve prompting a user for input or using navigation system data
to select map data for display. The map data could then be retrieved from
some sort of storage device (hard drive, CD-ROM, etc.). For demonstration
purposes, manual input of a map tile was required. Once received, adjacent
tiles (up to 2 rows/2 columns away) were determined. This produced a 5x5
matrix of map tile data with a resolution of 640x640 pixels (height = 5*128,
width = 5* 128).

Once the tiles needed for display were determined, decompression of the
tiles could begin. Tiles were retrieved sequentially starting with tileoo of the
5x5 matrix and ending with tile4,4 . Retrieval and decompression of each tile
required less than .5 seconds for completion. This decompression time
resulted from tests using LEAD Technology's LEADVIEW 255 compression card
based on the C-Cube CL550 compression processor and LEAD Technology's
LEADTOOLS V2.3 software run-time. Again, most of this time can be
attributed to hard drive accesses and data transfers across the PC bus rather
than the actual decompression operation itself.

7

As stated earlier, all tiles were compressed from an RGB (24-bit color)
format. Once decompressed the tiles needed to be color optimized for display.
This is due to the fact that Video Graphics Adapter (VGA) displays only support
a maximum of 256 colors. RGB colo. provides up to a maximum of 16.7
million colors. Color optimization was used to select the best 256 colors
needed to reproduce each image tile. Examining this a little further reveals
that for each image tile there exists 256 colors that will best represent each tile;
however, each tile may not optimize to the same 256 colors. This means that
in order to achieve the best 256 colors for the entire displayed image (5 tiles x 5
tiles), the color palettes for each tile must be optimized as a whole in order to
get the best 256 colors that represent the entire image. After decompressing
each tile, a color optimization was performed on the tile. The optimized tile
palette was then stored in a file containing all other optimized tile palettes.
After completing the optimization on all 25 tiles, the optimized palette file was
then itself optimized to 256 colors. This color optimization produced the
"image palette".

Display of the map tiles: involved indexing all 8-bit pixel color values from
each tile into the "image palette". All image tiles were then displayed on a VGA
monitor. For any tile additions required for display updates, a new "image
palette" would have to be created in order to obtain accurate color
representations for all the map tiles.

VIII. RESULTS

The results of this study reveal several important points regarding
compressed database preparation/display and image quality versus
compression ratios achieved.

As evidence from this study, it is possible to produce compressed map
databases with a minimal amount of hardware. In fact, the only specialized
equipment needed was the actual compression/decompression board. By
implementing database preparation on such a simple system, two important
objectives are met. The first objective is to produce a database preparation
system that is low cost. A complete ADRG database compression system
should cost no more than $10,000 including the compression/decompression
card. The second objective is to maintain compatibility with available systems.
Because the entire ADRG database preparation system runs on an MS-DOS
based PC, all MS-DOS systems (with proper hardware) should be able to
perform ADRG database preparation either in the field or in the office.

During the course of this study various quantization factors were
examined in order to determine their effect on compression ratios. By doing
this, we were able to ascertain the compression levels that could typically be
expected on ADRG data. Figure 6 shows various quantization factors and the
actual compression ratio achieved using that factor. These compression

8

25

S1 5..." '" -

o ",

II
910 '

3

255 200 180 170 160 140 120 100 60 25 2

Qiasadmuton Fact"r

Figure 6. ADRG Compression Ratios vs. Quantization Factors

ratios by no means represent the level of compression that will be achieved for
all ADRG database compression. It is simply a gauge of the levels that one
might expect after compressing an ADRG database. Results show that the
highest quantization factor (Q = 255), produces compression ratios of
approximately 25:1. More realistic compression ratios (from a visual
standpoint) of approximately 20:1 are obtainable using quantization factors
ranging from Q = 140 through Q = 170. Images compressed using quantization
factors below 100 yield lower compression ratios but better quality images.

When discussing image compression, another very important
consideration that must be addressed is the issue of compression ratio versus
image quality. This is a very difficult and highly subjective issue to discuss.
An image that may appear pleasing to one individual may appear unacceptable
to another. Although JPEG is designed to reduce visually redundant
information so as to be less perceivable to the human eye, when compression
ratios are increased to a high enough level, visual distortions begin to appear.
The question then becomes how much distortion is too much? No quantitative
measurement was located that can state how much visual degradation is too
much for an individual. It is purely a subjective decision. Figure 7 shows a
map section that has not been compressed. Compare this to Figure 8 which
shows the same map section after being compressed using a quantization
factor of 2 (compression ratio = 2.9:1). Next compare these figures with Figure
9 which has been compressed using a quantization factor of 160 (compression
ratio = 19.8:1). Finally, Figure 10 shows the same image after it has been
compressed using the maximum quantization factor of 255 (compression ratio

9

= 24.1:1). Clearly, as the quantization factor increases, the visual degradation

of the image increases.

IX. CONCLUSIONS

This study has shown that image compression is certainly a very useful
tool in managing the size of huge image databases. Using JPEG compression
techniques can result in images being compressed at ratios of approximately
20:1 while still maintaining good visual quality. This
compression/decompression can also be done in a timely manner due to
chips/chipsets currently available. This is important to systems that have
stringent timing requirements.

This study has also shown that database preparation systems can be
both inexpensive and easily implemented using common MS-DOS based PCs
and an image compression/decompression card.

I0

J1~ ~~~uf LŽCJ)-IS j~o~L t 1"'1:

e4

47%

c c

CI

so I 4 -k

4 4 e

o.s **

Iý 1M

ITI

IIw

fjTfj~ ~Isn jssid1u6I~h~oŽR\4 rr

-~4d

tgTA

J4

* '~4C

C Al

"APENDIX A

CODE TO REFORMAT ADRG DATA

Qinclude (stdio.h>
O~nclude <conio.h>
#include (stdlib.h>
#include <dos.h>
#include <fcntl.h)
#include (sys\stat.h>
Otnclude (la~h>
Olnclude (math.h>
#include <errno.h>

#define true 1

#define false 0

char red~bufffl6384]:
char *red buff ptr - red~buff;
char green~buff[16384J;
char *green buff ptr - green-..buff;
char blue buff[l6384);
char *blue_buff~ptr - blue_buff;
char adrg~img~file[13];
char adrg~gen~..file[13]:
char path..nanieI283;
static char long...ul[11):
static char lat...ul[lO);

void main()

static unsigned long Asz. Bs:
static unsigned long NIJL. NUS, NLL. NLS;
char *buffer-ptr;
static unsigned int image~height. image-.width:
static char cell name[lj);
static int cnt;
static mnt read-handle;
static int read-handle_irng:
static int write_handle;
u ;'t 9n --, '.. i n Cex - 16384;
char buffer;
static char row-num[3]:
static char col-num[3);
char user-response~l);
static mnt 1 - 0;
static mnt j - 0;
Int invalid_response - true;

/* This portion of the code prompts the user for input regarding the name ~
1* of the ADRG General Information File and the path of the file, The *
/* code also prompts the user for verification of input. *

while(invalid-.response -- true)(

15

cl rscr()
printf(*Name of ADRG General Information File (filename.ext):);
gets(adrggen file):
printf(*Is (%s) Correct? (Y or N): ". adrggenfile);
gets(user-response);
if((user_response[O) -- 'Y') 11 (userresponse[O) -- 'y'))(

printf(*Input Path Name (d:\\pathname\\):):
gets(path-name):
printf('Is (%s) Correct? (Y or N): *. path_name):
gets(user_response):
if((userresponse[O] -- 'Y') 11 (user response[O] -- 'y'))

invalid-response - false:
)

/* Combine the path with the General Information File name and open the */
/* file. Discard the first 1777 bytes of information in the file. These */
/* bytes may be useful to some applications. Consult the ADRG Product
/* Specification for more information. */

i - 0;
while(path_name[i] !- '\0')

i++;

for(J - 0; adrggenjfile(j] !- '\0': J++)
path-name[i++) - adrggen_file[j];

pathname~i] - '\0';

buffer ptr - &buffer;
readhandle - open(pathname, O_RDONLY I O0BINARY);
read(read-handle, bufferptr, 1777):

/* Read the 8 bytes that represent the east-west pixel spacing and convert */
/* that value to a long (Asz). */

bufferptr - &Asz;
read(read-handle. bufferptr, 8):
Asz - atol(bufferptr);

/* Read the 8 bytes that represent the north-south pixel spacing and
/* convert that value to a long (Bs). */

bufferptr - &Bs;
read(read handle, bufferptr, 8):
Bs - atol(bufferptr);

/* Read the 11 bytes that represent the longitudinal coordinates of the */
/* upper left corner of the area of coverage into the long_ul array. The */
/* format is +/- DDDMMSS.SS. */

bufferptr - &longul;
read(read-handle, bufferptr, 11);

/* Read the 10 bytes that represent the latitudinal coordinates of the
/* upper left corner of the area of coverage into the lat-ul array. The */
/* format is +/- DDMMSS.SS. */

bufferptr - &lat_ul:
read(read.handle. bufferptr. 10);

16

/* Read and discard the next 65 bytes. These bytes may useful to some
/* applications so code modification may be necessary. */

bufferptr - &buffer:
read(readhandle, bufferptr,65);

/* Read the 6 bytes that represent the row number of the upper right 4/

/* corner of image data (NUL). The value is then converted to a long.
buffer-ptr - &NUL:
read(read-handle, buffer_ptr, 6);
NUL - atol(buffer-ptr);

/* Read the 6 bytes that represent the column number of the upper right */
/* corner of image data (NUS). The value is then convdrted to a long. */

buffer-ptr - &NUS:
read(readhandle, buffer-ptr, 6);
NUS - atol(buffer_ptr):

/* Read the 6 bytes that represent the row number of the lower left
/* corner of image data (NLL). The value is then converted to a long.

buffer-ptr - &NLL;
read(readhandle, buffer-ptr. 6);
NLL - atol(bufferptr);

/* Read the 6 bytes that represent the column number of the lower left
/* corner of image data (NLS). The value is then converted to a long.

bufferptr - &NLS;
read(readhandle, bufferptr. 6);
NLS - atol(bufferptr):

/* Read the 3 bytes that represent the height of the map image (in 128x128 */
/* pixel tiles). The value is then converted to an integer. */

buffer ptr - &Imageheight;
read(readhandle, buffer_ptr. 3):

imageheight - atoi(buffer.ptr);

/* Read the 3 bytes that represent the width of the map image (in 128x128 */
/* pixel tiles). The value is then converted to an integer. */

bufferptr - &image-width;
read(read-handle, buffer_ptr, 3);
imagewidth - atoi(buffer-ptr):

/* Read and discard the next 17 bytes. These bytes may useful to some
/* applications so code modification may be necessary. */

buffer-ptr - &buffer:
read(readhandle, bufferptr, 17);

/* Read the 12 bytes that represent the name of the ADRG Image File. The 4/

/* bytes are stored in the adrg_img-file array. */
bufferptr - &adrg-imgfile:
read(readhandle. buffer-ptr. 12);

/* Read and discard the next 77 bytes. These bytes may useful to some
/* applications so code modification may be necessary. */

bufferptr - &buffer;

17

read(readhandle. buffer-ptr, 77);

/* Open the ADRG image file and strip out unused header bytes. Color */

/* tile information is then stored for reformatting process.
i - 12;
for(j - 0; adrg-imgfileij] !- '\0'; j++)

pathname[i++] - adrg-imgfile(j]:

readhandle-img - open(path-name. O_RDONLY I OBINARY);
read(read-handle_img. bufferptr, 2048);
j0;I - 0:

printf("\n"):

/* This Is the loop that names and reformats every Image tile In every
/* row. The image-height and image-width variables are used to keep track */

/* of this loop. Tiles are named with the following convention: *1
/* */

TILE NOMENCLATURE - DDD dd RRR.CCC *I
1* */

1* DDD - Longitude (degrees) of the upper left map corner *1
1* dd - Latitude (degrees) of the upper left map corner */

I* RRR - Map tile row number *1

CCC - Map tile column number */

for(l - 0; (i < imageheight); i++){
for(j - 0; j < imagewidth; j++)(

for(cnt - 0; cnt < 3; cnt++)
cellname(cnt] - long-ul[cnt + 1]:

for(cnt - 3: cnt < 5; cnt++)
cell_name[cnt] - latul[cnt - 2];

itoa(i, row-num, 10);
if(i <- 9){

cellname[5] - '0';
cellname[62 - '0':
cellname[7) - row-num[O]:

else if(i <- 99)(

cellname[5] - '0';
cellname[6) - row-num[O]:
cellname[7] - row-num[1];

else{
for(cnt - 5; cnt < 8: cnt++)

cellname[cnt3 - row-numtcnt - 5);

cell-name[81 -
itoa(J. col_num. 10);

if(j <- 9)(
cell~.name[9] -0'cell _name~lg] - ''
cell_name[t0] -'0';

cellnametil] - col-num[O];

18

else if(j <- 99)(

cell -name[9) - '0':
cell _name(I0) - col...numEOJ:
cell _name(I1) - col-num[l];

else[I
for(cnt - 9: cnt < 12; cnt++)
cell-name~cnt) - coh..num[cnt -9):

cell..name[12J - \:

index - 16384;
printf("Now formatting %s\n *, cell...name);

/* This section reads the data from the image tile into 3 buffers. These ~
I* are the red, green, and blue color byte buffers for each tile. *

write_handle - open(cell _name. 0.CREAT I 0..BINARY, S-IREAD
I S-.IWRITE);

readlread-handle..img, red_buff...ptr, index);
read(read..handle..Amg. green..buff~ptr. index):
read(read-handle..img, blue_buff...ptr, index);

/* Create files for the 128x128 pixel blocks. Pixels are then written to ~
/* a file in the format R-byte. G-byte, B-byte until all 128x128x24 pixel *
/* values have been written. *

forlindex - 0: index < 16384: index++)[
write~wrlte-handle. red...buff-.ptr++. 1):
write(write-handle. green..buff...ptr+-4. 1):
write(write-handle, blue...buff..ptr++. 1);

red..buff..ptr - &red_buff;
green...buff...ptr -&green...buff:

blue-buff...ptr -&blue..buff:
close(write-handle):

Ils~edhnl)

close(read..handleim);

return(O);

19

CODE TO COMPRESS ADRG DATA

#include <stdio.h>

#include <conio.h>
#include <stdlib.h>
#include <dos.h>

linclude <fcntl.h>
#include <sys\stat.h>
#i .lude <sys\types.h>

#include <io.h>

#include <math.h>
#include <errno.h>

#include <toolapp.h>
#include <1_error.h>
#include <(-bitmap.h>

#define true 1

#define false 0

/* Increase the size of the stack. */

extern unsigned _stklen - 14000U;

void main()
{

BITMAPHANDLE ADRGBitmap;
int 0_factor;
unsigned int imageheight - 71;

unsigned int image_width - 107;
static char longul[11];
static char latullO];

char row.num[3];
char colnum[3];
static char cell.name[15]:

static int i. j. cnt;
Int readhandle;

unsigned char *pBuf;
int retval;
char userresponse[5];
int invalidjresponse - true;

char fileprefix[5]:

/* Prompt the user for the longitude and latitude of the upper left map */

/* corner, the file prefix (for naming purposes). and the 0 factor to be */

/* used for compression. */
while(invalld-response -- true){

clrscr();

prlntf(lInput Longitude of the Upper Left Corner (ODD):);

gets(long_ul);
printf("Input Latitude of the upper left corner (dd):);

gets(latul);
printf(*Input File Prefix (A-Z): ");

gets(fileprefix);
printf(*Input 0 Factor for File Compression (1-255):);

gets(user response);

20

Q_factor - atoi(userresponse);
printf(*Is %d Correct? (Y or N): *, Q-factor):
gets(user-response);
if((user response[O] -- 'Y') 11 (userresponse[O) -- 'y'))

invalidresponse - false;

/* Compress files within the boundaries given by the map image height and */

/* width.
for(i - 0; 1 < image-height; i++)(

for(j - 0: j < imagewidth; j++)(

/* Create the name of the file to be compressed using the user input for */
/* upper left longitude (long-ul) and upper left latitude (latul).

for(cnt - 0: cnt < 3; cnt++)
cell_name[cnt] - longul[cnt);

for(cnt - 3: cnt < 5; cnt++)
cell_namercnt] - lat_ul[cnt - 31;

I* Convert image row index (I) to a string and store it in the rownum */
/* array for use in generating a file name. As the row number is */
/* incremeited, the cellname will be incremented accordingly.

itoa(i. row-num, 10);
if(i <- 9)(

cellname[5) - '0':
cell_name[6] - '0';
cellname[7] - row num[O];

else if(i <- 99)f
cell_name[S] - '0':
cellname[6] - row-num[O]:
cell-namer7] - row-num[1];

else(
for(cnt - 5: cnt < 8; cnt++)

cellname[cnt] - rownum[cnt 5]:

cell-name[8] -

/* Convert image column index (j) to a string and store it in the col _num */
/* array for use in generating a file name. As the column number is
/* incremented, the cell name will be incremented accordingly.

itoa(j, col-num, 10):
if(j <- 9)(

cell _name[9) - '0';
cellname[1O] - '0';
cell_name[11] - colnum[O];

else if(j <- 99)(

cell_name[9] - '0':
cellname[lO] - col-num[O]:
cellname[11] - col-num[l]:

else(

21

for(cnt - 9: cnt < 12: cnt++)
cell _name[cnt] - col _num[cnt - 9]:

/* Close cellname array with the end-of-string character '\O'.
cellname[12] - '\0';

/* Initialize and allocate space (in expanded memory) for a 128x128 pixel

/* (24 bit-per-pixel) image bitmap. */
L_InitBitmap(&ADRGBitmap, 128, 128. 24):
L_AllocateBitmap(&ADRGBitmap, TYPE_NOCONV);

/* Open the map file and load each pixel row into the bitmap using the

/* L-PutBitmapRow call. If no file exists treadhandle < 0) then exit the */

I* loop. *1
if((read-handle - open(cell_name. ORDONLY I 0_BINARY)) > 0)(

for(cnt - 0; cnt < 128: cnt++){

read(readhandle, pBuf. 384):
L_PutBitmapRow(&ADRG_Bitmap, pBuf. cnt. 384);

I* Close the file. *I
close(readhandle);

/* Insert the file prefix into the first position of the cellname array. */
/* Compress the image and report whether the compression was successful. */

cell nametO] - fileprefix[O]:
ret_val - LCompressBitmap(&AORG_Bitmap. cell_name. JFIF,

0_factor. NoVGAPalette);
if(ret-val -- SUCCESS)

printf('Compression on file %s was a success\n', cell_name);
else

printf(*Error #%d occurred\n', ret-val):

else
printf("Unable to Open File %s\n*, cellname):

/* Free the bitmap using LFreeBitmap and begin compression on the next */

I* file.
L_FreeBitmap(&ADRG_Bitmap);

22

CODE TO DECOMPRESS AND DISPLAY ADRO DATA

#include (stdio.h>
Otnclude (conio.h>
Oknclude <stdlib.h>
Ooiclude <dos.h>
#include <fcntl.h>
Oknclude <sys\stat.h>
#include (io.h)
#include (math.h)
#include (errno.h>
#include <graphics.h>
#Include (alloc.G1
#include <toolapp.h>
#include (1 error.h>
#include <1 bitmap.h>

#define true 1
#define false 0

/* Increase the size of the stack. *

extern unsigned _stklen - 14000U;

void main()

BITMAPHANDLE ADRG-Bitmap. New256_Color. NewPalette. Old_Palette
char row-num[5);
char display...tile[l5];
char dcom~tile(15):
unsigned mnt cnt:
unsigned mnt index;
signed j, i;
tnt read-handle. write-handle;
int x-coord;
tnt y~coord;
char pixel _color;
char center -tile[lS];
mnt invalidjresponse - true;
char user~responsef 10);
signed tnt tile_row-cnt;
signed tnt tile_col~cnt;
mnt x-center - 256;
mnt y...center - 176;
signed int image~width - 107:
signed mnt image~height - 71:
unsigned char pB~f~arrayf128);
unsigned char *pBuf - pBuf-array;
unsigned char new~pBuf-array[256j;
unsigned char *new~pBuf - new~pBuf..array;
unsigned char pRow..array(7683:
unsigned char *pRow - pRow-array:

char col _num[f5):

mnt ret-val:

23

unsigned int display-cnt:
unsigned int prowcnt - 0:

char far *fptr:
unsigned long mem_size;
unsigned char color_index;
int mode. page:

char firstchar[l]:

/* Store current video mode. */
LGetVideoMode(&mode, &page);

/* Prompt and verify the user for the center tile image to be displayed. */

while(invalidresponse -- true)(
cl rscr();
printf("Input Center Tile (LonLtRow.Col):):

gets(center_tile):
prlntf(1Is %s Correct? (Y or N): *. centertile);
gets(user_response);
if((userresponse[O) -- 'Y') 11 (userresponse(O] -- y'))

invalid_response - false:

/* Create a file for storage of color palettes. */
writehandle - open("Palette.mwc'. O_CREAT I OBINARY I O_RDWR, SIREAD

S_IWRITE);

/* Extract row and column information from the center tile name. */
for(index - 5; index < 8; index++)

rownum[index - 5) - center.tile[index);
for(index - 9: index < 12; index++)

colhnum[index - 9] - centertile[index];
tile_rowcnt - atoi(rownum);
tilecol cnt - atoi(colnum);

/* Remove the file prefix and replace with the original 0 found in the
/* longitudinal value of the upper left map corner. */

first-char[O] - centertileCO):
center_tile[O] - 0;

/* Load the displaytile array with the longitudinal and latitudinal
/* values that make-up the center_tile name. */

for(index - 0; index < 5; index++)
displaytile(index] - center tile[index];

/* This loop is used to display a SxS matrix of tiles that will be
/* centered around the tile input by the user. The first tile processed */
/* is in the upper left of the image. The tiles along that row are then */

/* processed sequentially and the next row is then processed starting from */
/* the left side and working right. */

for(i - tilerowcnt - 2; i <- tilerowcnt + 2; i++)(
itoa(i, row-num, 10);
lf((i < 0) II (i >- imageheight))(

24

for(index - 5; Index < 8: index++)
display~tile~index) -

else ifli <- 9)(
display~tile[5) - ''
display~tile(6J - ''
display-_tile(7] - row~numrO):-

else ifli <- 99){
display..tile[SJ - ''
display...tilet6) - row..numt0):
display..tile[7J - row-numCI):

el se(
for(cnt - 5: cnt < 8; cnt++)

display~tlle~cnt) - row~num[cnt -5);

for(j - tile~col _cnt - 2: j <- tile-col _cnt + 2: J++)(
itoaQj. col-num, 10);
display~tileCB)

/* If the tile is out of bounds (lie, the column number is less than 0 and *

/* greater than the image__width) a ?' is loaded into the file name so as ~
/* to produce a nonexistent tile name that will not be displayed. *

ifl(Q < 0) 11(j >- image...width)){
forlindex - 9: index < 12; index++)
display,.Sile~index)-

else if(j <- 9)(
display..tile[9J -0'

display~tile[10J -0'

display..tile[11) -col~num[0J;

else IfQj <- 99)(
display...tileE9) -'0';

display~tile~l0) col~num(0);
display~tile[11) col-num~l):

else{
for(cnt - 9: cnt < 12; cnt++)
display-tile[cntj - col~numfcnt -9):

/* Close cell-_name array with the end-of-string character '\0 *.

display~tile[12) -'N;

/* Load the dcomr_tile array with the display~tile array. *

for(cnt - 0; cnt < 13; cnt4-+)
dcom-tile[cnt] - display~tile~cntJ:

/* Add the file prefix to the display-tile array in position (0) *

dIsplay~tIle[0) - first-char(0):

25

/* Initialize a bitmap of 128x128 pixels and 24-bit color *1
L_Init~itmap(&ADRGBitmap. 128, 128, 24);

/* Decompress the display-tile and store it in the bitmap -/
printf('Decompression on tile %s'. displaytile
retval - LDecompressBitmap(display-tile. &ADRG Bitmap. BIT24);

/* If decompression was successful, optimize the image from 24-bit color */
/* down to 8-bit color. If successful, write the 8-bit palette to the
/* file 'Palette.mwc' ./

if(retval -- SUCCESS)(
ret_val - LOptimizeBitmap(&ADRGBitmap. &New256_Color.

NODITHERING, 256);
L_FreeBitmap(&ADRG Bitmap):
printf(* SUCCEEDED!\n")

else
printf(" FAILED!\n")

/* Check for the proper number of colors written to the 'Palette.mwc' file.*/
if(write(write-handle, New256_Color.pPalette, 768) I- 768)(

prlntf("Error writing 768 bytes!\n ;
)

/* Free the bitmap.
L_FreeBitmap(&New256_Color);

}

/* Close the file 'Palette.mwc'. *
close(writehandle);

/* Initialize and allocate memory for a bitmap.
LInitBitmap(&Old_Palette. 256. 25, 24);
retval - LAllocateBitmap(&OldPalette, TYPENOCONV):

/* Open the 'Palette.mwc' file. */
readhandle = open(*Palette.mwc*. O_RDONLY I OBINARY, SIREAD):

/* Place all 25 palettes (5xS tiles) into the newly allocated bitmap */
for(cnt - 0: cnt < 25; cnt++)(

retval - read(read handle. pRow. 768);
retval - L_PutBitmapRow(&Old_Palette, pRow, cnt, 768):

/* Close the 'Palette.mwc' file.
close(read-handle);

/* Change the color byte order from RGB to BGR. */

OldPalette.Order - ORDERBGR;

/* Optimize the palette file 'Palette.mwc' so as to produce the best 256 */
/* colors for all the images. *1

retval - LOptimizeBitmap(&OldPalette. &New_Palette. NO-DITHERING,

26

256):

/* Free the OldPalette bitmap.
L_FreeBitmap(&Old_Palette):

/* Set display resolution for the map image to 640x480. */

LSetVGASize(SIZE_640x480):

/* Extract row and column information from the center tile name. *1

for(index - 5; index < 8; index++)
row_num[index - 5] - center_tile[index]:

for(index - 9: index < 12: index++)
col_num[inaPx - 9] - centertile[index]:

tilerowcnt - atol(row-num);
tilecolcnt - atoi(colnum);

/* Load the displaytile array with the longitudinal and latitudinal */
/* values that make-up the center-tile name. */

for(index - 0; index < 5; index++)
displaytile[index] - center_tlle[index]:

/* This loop is used to display a 5x5 matrix of tiles that will be
/* centered around the tile input by the user. The first tile processed *!
/* is In the upper left of the image. The tiles along that row are then */
/* processed sequentially and the next row is then processed starting from */
/* the left side and working right. */

for(l - tile_rowcnt - 2: 1 <- tilerowcnt + 2: 1++)(
itoa(i. row-num. 10):
if((i < 0) II (i > image-height))(

for(index - 5; index < 8; index++)
displaytile[index] -

else if(i <- 9){
displaytile(5) - "0';
displaytile[6] - '0';
displaytile[7] - rownum[O];

else if(i <- 99)(
display-tile(5] - '0';
display tile[6] - rownum[O];
displaytile(7] - row num[l];

else(
for(cnt - 5: cnt < 8; cnt++)

display_tile[cnt] - row_num[cnt 5]:

/* If the tile is out of bounds (ie. the column number is less than 0 and */
/* greater than the imagewidth) a '?' Is loaded into the file name so as */
/* to produce a nonexistent tile name that will not be displayed. */

for(j - tile_col_cnt - 2: j <- tile_col_cnt + 2: j++){
itoa(J, colnum. 10):
displaytile([] - '.':
If(J < 0) 11 (J >- image-width))(

27

for(index - 9: index < 12: index++)
display..tile[index]

else if(j <- 9)(
display-.tile[9] -0'

display...tile[1O] -0'

display..tiletll) col _numlO]:

else if(j <- 99)f

display..tile[9) '0-
dlsplay..tile[1O) col _num[O);
display...tile(ll) col _num~l):

else(
for(cnt - 9; cnt < 12; cnt++)
display..tile~cnt) - col..numtcnt -9):

display...tile[123 -'\;

for(cnt - 0: cnt < 13: cnt+4-)
dcom-tile~cnt) - dlsplay...tiletcnt):

/* Close cell-_name array with the end-of-string character '\O'. *

display tilefO) - first char[O);

/* Initialize a bitmap. *

L_InftBitmap(&ADRG_8itmap. 128, 128. 24):

/* Decompress the map tile once again and store it in the bitmap.
if((ret-val - LDecompre~ssgtmap(display..tile. &ADRG_Bitmap,

B1T24)) <-0)(
printf(*Decompression on file %s failed. %d\n', dcom~tile.

ret-val):

l* Optimize the colors of the decompressed bitmap. *

if(ret-val -- SUCCESS H{
ret-va] - L..QptlmizeBitmap(&ADRG_Bitmap, &New256_Color.

NODITHERING. 256):
L_FreeBitmap(&ADRGBitmap);

/* Load the optimized image palette (from 'Palette.mwc&) into the newly ~
/* created optimized palette for the image.

for(cnt - 0: cnt < 768: cnt++)
New256_Color.pPalette~cnt] - NewPalette.pPalettefcnt)

/* Re-index the 8-bit map data to the updated color palette. This re-maps *

/* all pixel data (128x128 pixels) to the image palette. *

LGetBitmapRow(&NewPalette, new_p~uf. p~row...cnt, 256):
p~row_cnt++:
for(index - 0: index < 128: Index++)(

L_GetBitmapRow(&New2S6_Color, pBuf. index, 128):
for~cnt - 0; cnt < 128: cnt++)f

28

color_Index - pBuf~cnt]:
pBuf[cnt) - new_pBuf[color_index]:

L_PutBitmapRow(&New256_Color. pBuf, index. 128);

/* Calculate the display coordinates for each tile and load the tile to */
/* the screen. Free the bitmap after each tile is displayed. */

if(retval -- SUCCESS)(
y_coord - y_center + ((tile_rowcnt i) * 128);
x_coord - x-center - ((tile_col cnt J) * 128):
New256 Color.XOffset - xcoord
New256_Color.YOffset - ycoord
New256-Color.ViewPerspective - BOTTOM_LEFT
L_ViewBitmapScreen(&New256_Color. 0. 0
L_FreeBitmap(&New256_Color);

/* Free the optimized image color palette.
L_FreeBitmap(&NewPalette);

/* Wait for a user input before clearing the map display. */
getchar()

/* Reset monitor to original video mode.
L_SetVideoMode(mode. page):

29

APPENDIX B

TECHNICAL SOURCES

[1 .Digital Compression and Coding of Continuous-tone Still Images. ISO/IEC
DIS 10918-1.

[21 C-Cube CL550 JPEG Image Compression Processor Data Book. C-Cube
Microsystems, Inc., 1778 McCarthy Boulevard, Milpitas, CA 95035: February
1992.

MIL-A-89007: Military Specification ARC Digitized Raster Graphics. Defense
Mapping Agency, 8613 Lee Highway, Fairfax, VA 22031-2137: February 1990.

LEADTOOLS Developers Toolkit. LEAD Technologies, Inc., 8701 Mallard Creek
Road, Charlotte, NC 28262: 1992.

"Video Compression Technology Overview," Integrated Information Technology,
Inc., 2445 Mission College Boulevard, Santa Clara, CA 95054: September
1991.

Purcell, Stephen C., "The C-Cube CL550 JPEG Image Compression Processor,"
C-Cube Microsystems, Inc.

30

APPENDIX C

KEY TERMS

ADRG: ARC Digitized Raster Graphics
BAUD: Bits per Second
CCITT: Consultative Committee on International Telephony

and Telegraphy
CD-ROM: Compact Disk Read-Only-Memory
CMYK: Cyan, Magenta, Yellow, Black
DCT: Discrete Cosine Transform
DIS: Draft International Standard
DMA: Defense Mapping Agency
EISA: Extended Industry Standard Architecture
FOG-M: Fiber-Optic Guided Missile
IDCT: Inverse Discrete Cosine Transform
IEC: International Electrotechnical Commission
IFCS: Improved Fire Control System
I/O: Input/Output
ISA: Industry Standard Architecture
ISO: International Standards Organization
JPEG: Joint Photographic Experts Group
MLRS: Multiple Launch Rocket System
MPEG: Motion Picture Experts Group
MS-DOS: Microsoft Disk Operating System
PC: Personal Computer
Px64: CCITT H.261 Standard for Video Teleconferencing
RGB: Red, Green, Blue
SCSI: Small Computer System Interface
TRIS: Technical Risk Investigation System
UAV: Unmanned Aerial Vehicle
UGV: Unmanned Ground Vehicle
VGA: Video Graphics Adapter
YUV: Luminance, chrominance

31

"APPENDIX D

COMPRESSION HARDWARE DIAGRAM

fA

CD.ROM

0N MONITOR
04 00 0

CSI BusT

EISA BUS

486 PC

DECOMPRESSION HARDWARE DIAGRAM

> 0~

0r

L0<

ISA BUS

486 PC

32

INITIAL DISTRIBUTION

Copies

U.S. Army Materiel System Analysis Activity 1
ATTN: AMXSY-MP
Aberdeen Proving Ground, MD 21005

IIT Research Institute 1
ATTN: GACIAC
10 W. 35th Street
Chicago, IL 60616

AMSMI-RD 1
AMSMI-RD-AS-OG, Mr. W. E. Miller, Jr. 1
AMSMI-RD-AS-RA, Mr. Robert Eison 1
AMSMI-RD-AS-SS, Mr. Jonn Hatcher 1

AMSMI-RD-BA, Mr. Willie Fitzpatrick 1
AMSMI-RD-BA-C3I, Mr. Gary Clayton 1

AMSMI-RD-CS-R, Building 4484 5
AMSMI-RD-CS-T 1

AMSMI-RD-GC, Dr. Paul Jacobs 1
AMSMI-RD-GC-C, Mr. Carl Warren 1
AMSMI-RD-GC-L, Mr. David Jones 1
AMSMI-RD-GC-N, Mr. James McLean 1
AMSMI-RD-GC-S, Mr. Marc Crooks 2

Mr. Gerald Scheiman 1
Mr. Michael Pitruzzello
Mr. Dan Reed 1

AMSMI-RD-GC-T, Mr. Ron Wicks 1
Mr. James Bradas 1

AMSMI-RD-SS, Dr. Kelly Grider 1
AMSMI-RD-SS-HW, Dr. K. L. Hall 1
AMSMI-RD-SS-SP-AM, Mr. Tom Smith 1

AMSMI-GC-IP, Mr. Bush 1

SFAE-CC-AD, COL Daniel Montgomery 1
Mr. Reginald Skinner 1

SFAE-CC-AD-TM, Mr. Fred Pera 1
SFAE-CC-AD-TM-SE, Mr. Don Fullerton 1

Ms. Susan Roberts 1

SFAE-FS-ML-TM, Mr. Billy Crosswhite 1
Mr. Frank Gregory 1
Mr. Ken Miller 1
Mr. Bob Wilkes 1

DIST-l/(DIST-2 blank)

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

COLOR PAGES WHICH DO NOT

REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFICHE.

